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Individually matched case-control
studies

Analyses which preserve the matching of individual cases to their controls
follow similar principles to those of Chapter 18. The strata are now the
sets made up of each case and its matched controls. Studies designed to
have a fixed number of controls, m say, drawn for each case, will be referred
to as 1:m matched studies.

19.1 Mantel-Haenszel analysis of the 1:1 matched study

For reasons discussed in Chapter 18, the use of profile likelihood gives mis-
leading estimates of odds ratios when there are a large number of strata
with little data in each stratum. However, the Mantel-Haenszel method
works perfectly well in these circumstances. The calculations are particu-
larly easy in the 1:1 case, and illustrate ideas which are important for our
later discussion of the likelihood approach.

The results of 1:1 matched studies are usually presented in 2 x 2 tables
such as Table 19.1.* These data were drawn from the same study as re-
ported in Chapter 17, and concern the relationship between tonsillectomy
history and the incidence of Hodgkin’s disease. The total study included
174 cases and 472 controls, but the controls were siblings of the cases, and
the authors felt that the matching of cases and sibling controls should be
preserved. They also wished to control for age and sex and therefore re-
stricted their analysis to 85 matched case-control pairs in which the case
and sibling control were of the same sex and matched for age within a
specified margin. Note that, in the construction of matched sets, the orig-
inal 174 cases and 472 controls have been reduced to only 85 cases and 85
controls.

Tables such as Table 19.1 can be confusing because we are used to see-
ing tables that count subjects, while this table counts case-control sets.
The four cells of the table correspond to the four possible exposure con-
figurations of a case-control set. These are illustrated in terms of a tree
in Fig. 19.1. The first branching point is according to whether or not the
control was exposed (denoted E+- and E- respectively), while the second

*From Cole, P. et al. (1973) New England Journal of Medicine, 288, 634.
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Table 19.1. Tonsillectomy history in 85 matched pairs

History History of control

of case Positive Negative
Positive 26 15
Negative 7 37
Control Case H Hp D, Do
E+ 1 0 1 0
E+
BE— 1 0 0 1
E+ 0 1 1 0
E—
E— 0 1 0 1

Fig. 19.1. Exposure configurations for 1:1 sets.

branching is according to exposure of the case. The frequencies in Ta-
ble 19.1 refer to counts of these four configurations.

Exercise 19.1. How often did each of the exposure configurations of Fig. 19.1
occur?

In the analysis of individually matched studies the strata are case-
control sets so that, in the notation of Chapter 18, ¢ indexes sets. The
number of subjects in each stratum is N* = 2, and since each stratum.
contains one case and one control, D* and H? are always 1. The values of
Dy, D§, HY, and H{ for each exposure configuration are shown in Fig. 19.1.
In this figure and henceforth we will omit the superscript ¢ for clarity, and
remember that the symbols refer to values in a single case-control set.

Exercise 19.2. What are the contributions of each configuration to @ and
R in the Mantel-Haenszel estimate of the odds ratio? Similarly what are the
contributions to the score and score variance, U and V? Which configurations

_contribute to estimation and testing?

It can be seen that only two exposure configurations make any contribution
to estimation and testing of the odds ratio. These are the sets in which the
exposure status of case and controls differ and are called discordant sets.
The remaining sets are called concordant sets. In our current example, 63
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of the case-control sets are concordant and are ignored.

Exercise 19.3. For the tonsillectomy data, what are the values for Q, R, U, V?
Using the methods of Chapter 18, estimate the odds ratio, its 90% confidence
interval, and a p-value for § = 1.

The odds ratio estimate is very close to that obtained in the analysis of
Chapter 17, but so much data has been lost in this analysis that the result
is no longer statistically significant. It is easy to criticize an analysis which
discards so much data, but when it is necessary to preserve the matching
of controls to cases it is not easy to see how one can adjust for the effects of
additional variables by stratification, since the case and its control may fall
within different strata. At the time this study was reported there would
have been no alternative but to discard such sets. Nowadays, this problem
is easily overcome by use of the regression methods to be described in
Part II.

Before leaving this example, it is interesting to note that the above anal-
ysis is not the one originally reported. In their first report, the researchers
subscribed to the misconception discussed in Chapter 18 — that the match-
ing for age, sex, and family was sufficient to control for these variables and
that subsequently the matching could be ignored in the analysis.

Exercise 19.4. Show that the odds ratio estimate obtained by ignoring the
matching is less than that obtained by the correct analysis.

19.2 The hypergeometric likelihood for 1:1 matched studies

The hypergeometric likelihood is obtained by arguing conditionally upon
both margins of the 2 x 2 table, and depends only upon the odds ratio
parameter. It is usually difficult to compute, but its use is only necessary
when the data within strata are few. This is the case for individually
matched studies and the hypergeometric likelihood must be used. Luckily
in this case the computations are quite easy — particularly in the 1:1 case.

Fig. 19.2 derives the probability of each exposure configuration by mul-
tiplying along branches of the tree in the usual way and also lists the total
number of subjects in the set who were exposed, N;. The odds that the
control in the set was exposed is denoted by Qg and the odds that the case
was exposed by i, and we have written K for the expression

1
(1+20)1 + 1)

which occurs in all four probabilities. To obtain the hypergeometric like-
lihood we argue conditionally on the number of subjects exposed, N;. It
is clear from the figure that, when N; = 2, thére is only one possible ex-
posure configuration; the conditional probability of the observation is 1
and there is no contribution to the log likelihood. Similarly, there is no
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Control Case Ny Probability
Q1/(1 + Q) E+ 2 Qo K
E
Q0/(1 + o) +
1/(1+ Q1) > E—- 1 QK
Ql/(l + E+ 1 LK
1/ +90)\ g
1/(1+€1) > E~ 0 K

Fig. 19.2. Probabilities for a case-control set.

contribution to the log likelihood from sets in which N7 = 0. These con-
figurations correspond to the concordant sets which were also ignored in
our previous analysis. However, when N; = 1 the exposure configuration
could be either the second or third. These are the possible configurations of
discordant sets. The observed split of discordant sets between the second
and third configurations determines the log likelihood.

The conditional probabilities that a discordant set is of the third type
(case exposed, control unexposed) and the second type (case unexposed,
control exposed) are

QlK d QOK
QoK+ K QoK+ K

respectively, and the conditional odds that the case was exposed is the
ratio of these, /. This is the odds ratio parameter 0, assumed in our
model to be constant for all the case control sets. The conditional argument
therefore leads to a Bernoulli log likelihood based on splits of discordant;
sets into those in which the case is exposed and those in which the case is
unexposed, the odds for such splits being 6. In our data, such sets split
15:7 and the log likelihood is

151og(9) — 221og(1 + 6).

" Exercise 19.5. Calculate the most likely value of 8, a 90% confidence interval

and the score test for the null hypothesis § = 1. These results of this exercise
should agree precisely with those obtained using the Mantel-Haenszel method.
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Table 19.2.  Screening history in breast cancer deaths and matched
controls

Status Number of

of the controls screened

case 0 1 2 3

Screened 1 4 3 1

Unscreened 11 10 12 4

19.3 Several controls per case

The arguments outlined above may be extended to the situation in which
there are several controls for each case. As before, we start with the Mantel—
Haenszel approach.

Table 19.2 shows the results of a case-control study of breast cancer
screening. Cases are deaths from breast cancer and each case is matched
with three control women.! The exposure of interest is attendance for
breast cancer screening. If screening is effective in prolonging life, screened
women should have lower mortality rates and the odds ratio estimate from
the case-control study should be less than 1. Note that as in Table 19.1,
the table counts case-control sets and not women.

This study illustrates one of the reasons for matching discussed in Chap-
ter 18. Women who die from breast cancer usually do so some years after
initial diagnosis and during the period between diagnosis and death they
would not be screened. Thus, controls would have a greater opportunity to
be screened than cases. This difficulty was overcome by determining the
relevant ezposure window, the screening history of the controls was assessed
over the period up to the time of diagnosis of the case, so that the screen-
ing histories of cases and controls are comparable. It was only possible to
deal with this problem in this way because the study matched controls to
individual cases.

Table 19.2 demonstrates the usual way such data are presented. How-
ever, it is very difficult to perceive any pattern — even as to whether or
not screening appears to be a protective. To understand the analysis, we
shall start by reordering the data as a tree. Fig. 19.3 illustrates the possible
exposure configurations. The first three branches represent the exposure
status of the three controls, the upper branch representing exposed (E+)
and the lower unexposed (E—). Because we do not wish to differentiate
between individual controls, this section of the tree may be abbreviated.
For the first two controls, we do not need to differentiate between the con-
figurations (E+, E—) and (E—, E+). These are simply grouped together as
having 1 control exposed and we write the figure 2 at this point to remind
us that branches emanating from this point are double branches. Similarly,
after consideration of the third control we group together the 3 configu-

TFrom Collette, H.J.A. et al. (1984) The Lancet, June 2, 1984, 1224-1226.

Controls Case H, Hy D, Dy
(1) 2) 3)
E+ 3 0 1 0 (a)
< |
E— 3 0 0 1 (b
+
E+ 2 1 1 0 (o)
o <
E- 2 1 0 1 (d)
T2
+
E+ 1 2 1 0 (e)
E_ —
+ 3<
E— 1 2 0 i ()
<E+ 0 3 1 0 (2
E— 0 3 0 1 (h)

Fig. 19.3. Exposure configurations for 1:3 sets.

rations with 2 exposed controls and the 3 configurations with 1 exposed
control. The final branching represents the exposure status of the case.

Exercise 19.6. In the screening data, how frequently do each of the eight types
of exposure configuration occur?

We shall first analyse these data by the Mantel-Haenszel method. In
the next section, we shall discuss the likelihood approach and show how it
suggests a more useful arrangement of the table.

Exercise 19.7. Tabulate the values of @, R, U, and V for these eight tables
and hence calculate the Mantel-Haenszel significance test, odds ratio estimate
and an approximate 90% confidence interval.

This analysis shows that the study finds a substantial and statistically
significant reduction in mortality as a result of breast cancer screening.

"19.4 The likelihood

The analysis of these data by use of the hypergeometric likelihood method
is also quite straightforward. As before we argue conditionally upon the
margins. Fig. 19.4 shows the total number of subjects exposed, Ny, and the
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Controls _ Case N1
1 (2) 3)
E+ 4 (90)391[{ (a.)
E- 3 (Q)°K (b)
+
E+ 3 3(90)291[{ (C)
. <
E- 2 3(Q)*K (d)
T2
+
E+ 2 3QoQ1K (e)
E- >3
E— 1 30K (£)
E— 0 K (h)

Fig. 19.4. Probabilities for 1:3 sets.

probability of each configuration, again writing K for the common factor,
in this case

1

K= 1+ Q)30 +0)

Note that the probabilities for configurations (c) to (f) are multiplied by 3
because each of these represents three paths in the complete tree. Now there
are 5 possible values for the total number of subjects exposed. Again there
are two concordant configurations in which the number of subjects exposed
uniquely determines the configuration. Ny = 4 ensures configuration (a)
.and N; = 0 ensures configuration (h). These make no contribution to the
log likelihood. Each of the other three values of N; allows for two possible
configurations, one in which the case is exposed and the other in which the
case is unexposed. It is the splits of the observed data between these that
yield the likelihood. .

If the total number-of exposed subjects in the set, Ny, is fixed at 3, then
the exposure configuration must be either (b) or (c¢) and the conditional
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Table 19.3. Splits of case-control sets
N; Split Odds Observed

3 (c):(b) 36 3:4
2 (e):(d) 0 4:12
1 (ge(f) 6/3 1:10

odds for the split (c):(b) is

3(Q)2nK 3 30

(Q9)3K Qe )
Similarly, N; = 2 implies (d) or (e) and N; = 0 implies (f) or (g). The odds
predicted by the model for these splits are set out in Table 19.3, together
with the observed frequencies. By eye we can see that a value of 6 of about
0.3 predicts the observed splits very well indeed. More formally, the log

likelihood is
0 0
1 b Z
1 og(3> 11log (1+3>

+ 4log(6) —16log(1+6)
+ 3log(30) — Tlog (1 + 36).

There is no simple expression for the maximum likelihood estimate and
it is necessary to use a computer program to search for the maximum.
This occurs at § = 0.31 (log(6) = —1.18). The plot of the log likelihood
ratio against log(#) is shown in Fig. 19.5. A Gaussian approximation with
S = 0.404 fits quite closely.

The generalization of this argument to any number of controls per case
may be carried out algebraically or by extending our tree. For sets of
N7 exposed subjects and Ny unexposed subjects, the constant odds ratio
model predicts that sets will split between those with an exposed case and
those with an unexposed case with odds

N16/No.

A similar generalization is possible for several cases in each set. We will
not give the details here, but computer software is readily available. Such
analyses do not arise frequently in practice. An exception is family studies
in which more than one sibling may be affected by a disease and unaffected

~.siblings are used as controls.

In the examples discussed in this chapter, the Mantel-Haenszel and like-
lihood methods agree closely. The calculations for the former are rather
easier, but the advantage of the likelihood approach lies in its greater gen-
erality and possibilities for extension. For example, when there are more
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Fig. 19.5. Log likelihood ratio for log(6).

than two exposure categories, there is no simple method analogous to the
Mantel-Haenszel approach. We shall defer discussion of such extensions to
Part II of the book.

Solutions to the exercises

19.1 In ‘the order in which the exposure configurations are listed in the
figure, their frequencies are 26, 7, 15, and 37.

19.2 In the same order as listed,

Q R U V
0 0 0 0
0 1/2 -1/2 1/4
/2 0 12 1/4
0 0 0 0

Only the second and third configurations contribute to @, R, U, and V.

19.3

15 x (1/2)
7 x (1/2)
15x(1/2) —7x(1/2) =4

Q@O
[

I
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V o= 15x(1/4)+7x(1/4) =55

The odds ratio estimate is 15/7 = 2.14. This estimates the underlying
rate ratio, so that the suggestion is that tonsillectomy doubles the rate of
Hodgkin’s disease. Using the expression

|V
S = OR 0.4577,

the 90% error factor for the odds ratio is exp(1.645 x 0.4577) = 2.12. The
90% confidence limits are, therefore, 2.14/2.12 = 1.01 (lower limit) and
2.14 x 2.12 = 4.54 (upper limit). Referring the value (U)?/V = 2.91 to the
chi-squared distribution gives p =~ 0.09.

19.4 If the matching is ignored, the following 2 x 2 table is obtained:

History: Positive Negative

Cases 41 44

Controls 33 52
The odds ratio in this table is (41 x 52)/(33 x 44) = 1.47, as compared to
the value of 2.14 obtained by the correct analysis.

19.5 The most likely value is 15/7 = 2.14. To calculate the approximate
90% interval using Gaussian approximation of the log likelihood for log(6)

we use
f1 1
=4/— 4= =0.4577
S 15+7 04577,

the same as we obtained with the Mantel-Haenszel method. Under the null
hypothesis, the probability for the split is 0.5 so that the expected number
of sets with an exposed case is 22 x 0.5 = 11. The score and score variance
are

U = 15-11=4,
V = 22x0.5x0.5=55.

Again these are the values we obtained using the Mantel-Haenszel method.

\

""19.6 In the order listed in the figure, the 8 exposure configurations have

frequencies 1, 4, 3, 12, 4, 10, 1, 11.

19.7 The contributions to @, R, U and V are shown below:
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Number

of sets Q R U v
(a) 1 0 0 0 0
(b) 4 0 3/4 -3/4 9/48
(c) 3 1/4 0 1/4 9/48
(d) 12 0 2/4 —2/4 12/48
(e) 4 2/4 0 2/4 12/48
() 10 0 1/4 -1/4 9/48
() 1 3/4 0 3/4 9/48
(h) 11 0 0 0 0
Total 14/4 46/4 -32/4 354/48

Note that each contribution has to be multiplied by the number of times
it occurred so that, for example, the total value of Q is

(3 x 1/4) + (4 x 2/4) + (1 x 3/4) = 14/4.

The Mantel-Haenszel estimate of 6 is 14/46 = 0.30 and the chi-squared
test is (U)?/V = 8.68 (p < 0.01). An approximate error factor can be
calculated from

v

exp (1.645 X ﬁ) =2.02

so that the 90% confidence interval lies from 6 = 0.15 to @ = 0.60.
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